Astronomer, inventor, and old friend of the family/distant relative Bob Doyle has begun a project to address old philosophical problems using information theory.
One such problem, as he explained to me at my aunt's 75th birthday last weekend, is free will versus determinism. Philosophers have been arguing for eternity whether free will exists, and if it does, where it comes from. Disconcertingly, free will seems incompatible with the major theories of physics. In Newtonian physics, all future states of the universe are completely determined by its present state, so no choices can ever be made. In quantum physics, events happen randomly according to precise mathematical rules, so the only "choices" are simply rolls of God's dice. Neither one of these theories seem to allow for any human or animal agency in changing world events.
Bob's idea is that the combination of Newtonian determinism and quantum randomness can explain more than either theory separately. Randomness generates new information and ideas in our brains, giving us novel options to choose from. But our brain is deterministic enough to sort through these ideas and choose the ones that are consistent with our character and past experience. In other words, randomness provides the "free" aspect of free will, and determinism provides the "will."
I don't think this theory is complete, because there's no real explanation of what the choice-making process looks like. But it seems beyond dispute that both random and deterministic forces play a role in what we call "human creativity." Currently, Bob is scouring the history of philosophy for all that's been said on the free will question, and how information theory and physics could connect to this. The blog of his efforts is now a proud memeber of the plektix blogroll.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
-
Political pollsters are pretending they know what's happening. They don't.1 month ago in Genomics, Medicine, and Pseudoscience
-
-
Course Corrections6 months ago in Angry by Choice
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
Does mathematics carry human biases?4 years ago in PLEKTIX
-
-
-
-
A New Placodont from the Late Triassic of China5 years ago in Chinleana
-
Posted: July 22, 2018 at 03:03PM6 years ago in Field Notes
-
Bryophyte Herbarium Survey7 years ago in Moss Plants and More
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
WE MOVED!8 years ago in Games with Words
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Growing the kidney: re-blogged from Science Bitez9 years ago in The View from a Microbiologist
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
A Mathematician's Apology
First, the apology: I started a summer job last week and it's taking up a huge amount of time. So posts will be infrequent until my job ends in August.
But since it's on my mind, I'd like to share a bit about this job. I'm assisting in the PROMYS for Teachers program. The goal of the program is to give math teachers an experience similar to the way mathematicians do math.
We mathematicians approach math differently from the way anyone else does. Most people learn math by watching a teacher explain a concept and demonstrate some examples. Students then apply these concepts to some practice problems, and that's pretty much it.
Mathematicians are in the business of discovering new mathematics, not reproducing what is known. To do this, we do what all scientists do: we experiment. Except that for us, experimentation involves only a pencil and paper (computers are sometimes used, but not as much as you might think.) We take numbers or shapes or other mathematical objects and play around with them. This can be a frustrating and fruitless process, but eventually we hope to discover something interesting about the way these objects work.
The next step after discovery is to describe our discovery. This is harder than it sounds, because mathematical language is very precise. One's first few attempts to describe a discovery are often wrong in some way; perhaps an important qualifier has been left out. Sometimes we have to invent new language to describe a discovery.
Finally, we try to justify our discovery by proving it from first principles or from other established theorems. This process can range from easy (a few minutes of thinking) to moderately hard (a few weeks) to epic (a few centuries.) The most famous mathematical theorems come from discoveries that are simple to describe but surprisingly difficult to prove.
In the PROMYS for Teachers program, we try to give teachers a taste of this experience. We give them numerical problems that hint at deep mathematical patterns. We then ask them to describe these patterns precisely and prove them if possible. This is often frustrating for them, since they haven't been shown how to do the problems or proofs beforehand. But by making their own discoveries, they take ownership of the mathematics, and when the process works it is tremendously exciting.
This program is modelled on the Ross program at Ohio State University, which I attended as a high school student. That program basically made me into a mathematician, so it is very rewarding to me to be able to share this experience with teachers.
But since it's on my mind, I'd like to share a bit about this job. I'm assisting in the PROMYS for Teachers program. The goal of the program is to give math teachers an experience similar to the way mathematicians do math.
We mathematicians approach math differently from the way anyone else does. Most people learn math by watching a teacher explain a concept and demonstrate some examples. Students then apply these concepts to some practice problems, and that's pretty much it.
Mathematicians are in the business of discovering new mathematics, not reproducing what is known. To do this, we do what all scientists do: we experiment. Except that for us, experimentation involves only a pencil and paper (computers are sometimes used, but not as much as you might think.) We take numbers or shapes or other mathematical objects and play around with them. This can be a frustrating and fruitless process, but eventually we hope to discover something interesting about the way these objects work.
The next step after discovery is to describe our discovery. This is harder than it sounds, because mathematical language is very precise. One's first few attempts to describe a discovery are often wrong in some way; perhaps an important qualifier has been left out. Sometimes we have to invent new language to describe a discovery.
Finally, we try to justify our discovery by proving it from first principles or from other established theorems. This process can range from easy (a few minutes of thinking) to moderately hard (a few weeks) to epic (a few centuries.) The most famous mathematical theorems come from discoveries that are simple to describe but surprisingly difficult to prove.
In the PROMYS for Teachers program, we try to give teachers a taste of this experience. We give them numerical problems that hint at deep mathematical patterns. We then ask them to describe these patterns precisely and prove them if possible. This is often frustrating for them, since they haven't been shown how to do the problems or proofs beforehand. But by making their own discoveries, they take ownership of the mathematics, and when the process works it is tremendously exciting.
This program is modelled on the Ross program at Ohio State University, which I attended as a high school student. That program basically made me into a mathematician, so it is very rewarding to me to be able to share this experience with teachers.
Subscribe to:
Posts (Atom)