It ain't easy being green. Biology has long suffered under the label "soft science," a term used (often disparagingly) to draw a contrast with the "hard sciences" of physics and chemistry, whose laws are guaranteed with the certainty of mathematics. But this picture is not altogether true. While biological processes are more complex than physical ones, making simple mathematical formulas harder to come by, there are yet some mathematical rules that hold with a remarkable degree of consistency.
One famous example is the relationship of a animal's mass to its metabolism (the rate at which it expends energy). This relationship is expressed in the simple formula
R = R0M3/4,
where R is the metabolic rate, R0 is a constant, and M is the mass of the organism.
Separate laws exist for mammals, birds, unicellular organisms, and even living structures like mitochondria within cells. The values of R0 are
different for each law, but the mysterious 3/4 exponent stays the same.
These laws have been observed since 1930, but the reason for the 3/4 exponent has been a mystery until recently. The discovery by Geoff West et al of a mechanism underlying this law was a major triumph for the complex systems movement: a universal law of life explained by complex systems principles.
Specifically, West showed that the 3/4 exponent comes from the way a living thing distributes its resources. If the cells in an animal acted like independent beings, each gathering and consuming its own food, the metabolic rate would be a simple multiple of the mass, that is
R = R0M
with no exponent. But the cells of an animal aren't independent. They work together to collect, process, and consume energy. To do this they need networks (such as blood vessels) to move resources around. West and his collaborators showed that the 3/4 exponent is determined by the requirements that the network a) reach every part of the animal's body, and b) waste as little energy as possible.
Extending this approach, they were able to explain other scaling laws like the relationship between heart rate and mass. Currently, West is investigating scaling laws in large-scale living communities, such as forests and cities.
I haven't talked much about network theory (a topic for another time perhaps) but West's work suggests the great potential of this complex systems subfield to explain some of life's mysteries.
- Home
- Angry by Choice
- Catalogue of Organisms
- Chinleana
- Doc Madhattan
- Games with Words
- Genomics, Medicine, and Pseudoscience
- History of Geology
- Moss Plants and More
- Pleiotropy
- Plektix
- RRResearch
- Skeptic Wonder
- The Culture of Chemistry
- The Curious Wavefunction
- The Phytophactor
- The View from a Microbiologist
- Variety of Life
Field of Science
-
-
RFK Jr. is not a serious person. Don't take him seriously.1 month ago in Genomics, Medicine, and Pseudoscience
-
-
-
The Site is Dead, Long Live the Site2 years ago in Catalogue of Organisms
-
The Site is Dead, Long Live the Site2 years ago in Variety of Life
-
-
What I read 20194 years ago in Angry by Choice
-
-
-
Histological Evidence of Trauma in Dicynodont Tusks6 years ago in Chinleana
-
Posted: July 21, 2018 at 03:03PM6 years ago in Field Notes
-
Why doesn't all the GTA get taken up?6 years ago in RRResearch
-
-
Harnessing innate immunity to cure HIV8 years ago in Rule of 6ix
-
-
-
-
-
-
post doc job opportunity on ribosome biochemistry!9 years ago in Protein Evolution and Other Musings
-
Blogging Microbes- Communicating Microbiology to Netizens10 years ago in Memoirs of a Defective Brain
-
Re-Blog: June Was 6th Warmest Globally10 years ago in The View from a Microbiologist
-
-
-
The Lure of the Obscure? Guest Post by Frank Stahl12 years ago in Sex, Genes & Evolution
-
-
Lab Rat Moving House13 years ago in Life of a Lab Rat
-
Goodbye FoS, thanks for all the laughs13 years ago in Disease Prone
-
-
Slideshow of NASA's Stardust-NExT Mission Comet Tempel 1 Flyby13 years ago in The Large Picture Blog
-
in The Biology Files
No comments:
Post a Comment
Markup Key:
- <b>bold</b> = bold
- <i>italic</i> = italic
- <a href="http://www.fieldofscience.com/">FoS</a> = FoS